Part Number Hot Search : 
B81BA1 R2100 2103HVG 80020 ZSR285C 1N4946 V76L1 LM2576
Product Description
Full Text Search
 

To Download APT30GP60LDLG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  052-6355 rev c 3-2012 maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. static electrical characteristics min typ max 600 3 4.5 6 2.2 2.7 2.1 275 2750 100 characteristic / test conditions collector-emitter breakdown voltage (v ge = 0v, i c = 1.0ma) gate threshold voltage (v ce = v ge , i c = 1ma, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 30a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 30a, t j = 125c) collector cut-off current (v ce = 600v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 600v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) symbol bv ces v ge(th) v ce(on) i ces i ges symbol v ces v ge v gem i c1 i c2 i cm ssoa p d t j ,t stg t l ratings 600 2030 100 49 120 120a @ 600v 463 -55 to 150 300 parameter collector-emitter voltage gate-emitter voltage gate-emitter voltage transient continuous collector current @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 @ t c = 25c switching safe operating area @ t j = 150c total power dissipation operating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. the power mos 7 ? igbt used in this resonant mode combi is a new generation of high voltage power igbts. using punch through technology this igbt is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. resonant mode combi igbt ? c e g features low conduction loss low gate charge ultrafast tail current shutoff low forward diode voltage (v f ) ultrasoft recovery diode ssoa rated rohs compliant typical applications induction heating welding medical high power telecom resonant mode phase shifted bridge microsemi website - http://www.microsemi.com unit volts amps watts c volts unit a na apt30gp60b2dl(g) apt30gp60ldl(g) 600v, 30a, v ce(on) = 2.2v typical g c e g c e downloaded from: http:///
052-6355 rev c 3-2012 apt30gp60b2dl_ldl(g) dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 300v i c = 30a t j = 150c, r g = 5 , v ge = 15v, l = 100 h,v ce = 600v inductive switching (25c) v cc (peak) = 400v v ge = 15v i c = 30a r g = 5 t j = +25c inductive switching (125c) v cc (peak) = 400v v ge = 15v i c = 30a r g = 5 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching soa turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 min typ max 3200 295 20 7.5 90 20 30 120 13 18 55 46 260 335 250 330 13 18 84 80 260 508 518 750 unit pf v nc a ns j ns j unit c/w gm min typ max .27 .88 5.90 characteristicjunction to case (igbt) junction to case (diode) package weight symbol r jc r jc w t thermal and mechanical characteristics 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on-energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. (see figure 24.) 5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) microsemi reserves the right to change, without notice, the speci? cations and information contained herein. downloaded from: http:///
052-6355 rev c 3-2012 t j = 25c. 250 s pulse test <0.5 % duty cycle typical preformance curves t c =-55c t c =125c t c =25c v ce =480v v ce =300v v ce =120v v ge = 10v. 250 s pulse test <0.5 % duty cycle v ge = 15v. 250 s pulse test <0.5 % duty cycle v ge = 15v. 250 s pulse test <0.5 % duty cycle t j = 25c t j = -55c t j = 125c t c =-55c t c =25c t c =125c 250 s pulse test <0.5 % duty cycle i c = 30a t j = 25c bv ces , collector-to-emitter breakdown v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) voltage (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) apt30gp60b2dl_ldl(g) v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(v ge = 15v) figure 2, output characteristics (v ge = 10v) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction trmperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction temperature t j , junction temperature (c) t c , case temperature (c) figure 7, breakdown voltage vs. junction temperature figure 8, dc collector current vs case temperature 6050 40 30 20 10 0 1614 12 10 86 4 2 0 3.5 3 2.5 2 1.5 1 0.5 0 140120 100 8060 40 20 0 i c = 60a i c = 30a i c = 15a i c = 60a i c = 30a i c = 15a 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 0 10 20 30 40 50 60 70 80 90 100 6 8 10 12 14 16 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 6050 40 30 20 10 0 200180 160 140 120 100 8060 40 20 04 3.5 3 2.5 2 1.5 1 0.5 0 1.2 1.151.10 1.05 1.0 0.950.90 0.85 0.8 downloaded from: http:///
052-6355 rev c 3-2012 apt30gp60b2dl_ldl(g) t j = 125c, v ge = 10v or 15v v ce = 400v r g = 5 l = 100 h v ge = 15v v ge = 10v v ge =15v,t j =125c v ce = 400v t j = 25c, t j =125c r g = 5 l = 100 h r g = 5 , l = 100 h, v ce = 400v r g = 5 , l = 100 h, v ce = 400v i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junction temperature switching energy losses ( j) e on2 , turn on energy loss ( j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses ( j) e off , turn off energy loss ( j) t f, fall time (ns) t d (off) , turn-off delay time (ns) 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 25 50 75 100 125 v ge =10v,t j =125c v ge =15v,t j =25c v ge =10v,t j =25c t j = 25c, v ge = 10v or 15v 100 9080 70 60 50 40 30 20 10 0 100 8060 40 20 0 t j = 125c, v ge = 10v or 15v v ce = 400v v ge = +15v r g = 5 v ce = 400v v ge = +15v r g = 5 v ce = 400v v ge = +15v r g = 5 e on2, 60a e off, 60a e on2, 30a e off, 30a e on2, 15a e off, 15a e on2, 60a e off, 60a e on2, 30a e off, 30a e on2, 15a e off, 15a v ce = 400v v ge = +15v t j = 125 c t j = 125c,v ge = 10v t j = 125c,v ge = 15v t j = 25c,v ge = 10v t j = 25c, v ge = 10v or 15v t j = 25c,v ge = 15v 2520 15 10 50 5040 30 20 10 0 14001200 1000 800600 400 200 0 25002000 1500 1000 500 0 t j = 25 or 125c,v ge = 15v t j = 25 or 125c,v ge = 10v downloaded from: http:///
052-6355 rev c 3-2012 300100 5010 0 10 20 30 40 50 60 10,000 5,0001,000 500100 5010 50 140120 100 8060 40 20 0 c, capacitance ( p f) i c , collector current (a) f max , operating frequency (khz) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18, minimim switching safe operating area 0 10 20 30 40 50 0 100 200 300 400 500 600 700 i c , collector current (a) figure 20, operating frequency vs collector current c res c ies c oes typical preformance curves t j = 125 c t c = 75 c d = 50 %v ce = 400v r g = 5 apt30gp60b2dl_ldl(g) max max1 max 2 max1 d(on) r d(off ) f diss cond max 2 on 2 off jc diss jc fm i n ( f,f) 0.05 f ttt t pp f ee tt p r = = ++ + ? = + ? = 0.300.25 0.20 0.15 0.10 0.05 0 note: duty factor d = t 1 / t 2 peak t j = p dm x z jc + t c t 1 t 2 p dm z jc , thermal impedance (c/w) 0.3 0.9 0.7 0.1 0.05 0.5 single pulse rectangular pulse duration (seconds) figure 19, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 downloaded from: http:///
052-6355 rev c 3-2012 apt30gp60b2dl_ldl(g) figure 22, turn-on switching waveforms and de? nitions 10 % 5 % 10% t d(on) t r 90% 5 % gate voltage collector voltage collector current switching energy t j = 125 c figure 23, turn-off switching waveforms and de? nitions t j = 125 c collector current collector voltage gate voltage 90% 90% t f t d(off) 0 10% switching energy *driver same type as d.u.t. i c v clamp 100uh v test a a b d.u.t. driver* v ce figure 24, e on1 test circuit i c a d.u.t. apt15df60 v ce figure 21, inductive switching test circuit v cc apt30dl60 downloaded from: http:///
052-6355 rev c 3-2012 characteristic / test conditions maximum average forward current (t c = 126c, duty cycle = 0.5) rms forward current (square wave, 50% duty)non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 30a forward voltage i f = 60a i f = 30a, t j = 125c static electrical characteristics unit amps unit volts min typ max 1.3 1.6 2.0 1.9 apt30gp60b2dl_ldl(g) 3051 320 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. ultrafast soft recovery anti-parallel diode min typ max - 64 - 317 - 962 - 7 - - 561 - 2244 - 9 - - 264 - 3191 - 26 unit ns nc amps ns nc amps ns nc amps characteristic reverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 30a, di f /dt = -200a/ s v r = 400v, t c = 25 c i f =30a, di f /dt = -200a/ s v r = 400v, t c = 125 c i f = 30a, di f /dt = -1000a/ s v r = 400v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c dynamic characteristics apt30gp60b2dl_ldl(g) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 1. maximum effective transient thermal impedance, junction-to-case vs. pulse duration peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: z jc , thermal impedance (c/w) downloaded from: http:///
052-6355 rev c 3-2012 apt30gp60b2dl_ldl(g) 0 10 20 30 40 50 60 70 80 90 100 0 0.5 1.0 1.5 2.0 2.5 3.0 0 100 200 300 400 500 600 700 800 0 200 400 600 800 1000 0 10 20 30 40 50 60 70 25 50 75 100 125 150 175 0 4 8 12 16 20 24 28 32 0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1 1.2 0 25 50 75 100 125 150 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 200 400 600 800 1000 i rrm q rr t rr 60a 30a 60a 30a t j = 55c t j = 150c v f , anode-to-cathode voltage (v) figure 2, forward current vs. forward voltage i f , forward current (a) t j = 25c t j = 125c -di f /dt, current rate of change (a/ s ) figure 3, reverse recovery time vs. current rate of change t rr , collector current (a) q rr , reverse recovery charge (nc) t j , junction temperature (c) figure 6, dynamic parameters vs junction temperature k f , dynamic parameters (normalized to 1000a/ s) i rrm , reverse recovery current (a) case temperature (c) figure 7, maximum average forward current vs. case temperature i f(av) (a) 0 50 100 150 200 250 300 1 10 100 400 v r , reverse voltage (v) figure 8, junction capacitance vs. reverse voltage c j , junction capacitance (pf) t j = 125c v r = 400v t j = 125c v r = 400v -di f /dt, current rate of change (a/ s ) figure 4, reverse recovery charge vs. current rate of change -di f /dt, current rate of change (a/ s ) figure 5, reverse recovery current vs. current rate of change t j = 125c v r = 400v 30a 15a 15a 15a 60a downloaded from: http:///
052-6355 rev c 3-2012 15.49 (.610)16.26 (.640) 5.38 (.212)6.20 (.244) 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065)2.13 (.084) 1.01 (.040)1.40 (.055) 5.45 (.215) bsc 2.87 (.113)3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) gate these dimensions are equal to the to-247 without the mounting hole. 2-plcs. 19.51 (.768)20.50 (.807) 19.81 (.780)21.39 (.842) 25.48 (1.003)26.49 (1.043) 2.29 (.090)2.69 (.106) 0.76 (.030)1.30 (.051) 3.10 (.122)3.48 (.137) 4.60 (.181)5.21 (.205) 1.80 (.071) 2.01 (.079) 2.59 (.102) 3.00 (.118) 0.48 (.019)0.84 (.033) collecto emitte gate dimensions in millimeters and (inches) 2.29 (.090)2.69 (.106) 5.79 (.228)6.20 (.244) 2.79 (.110)3.18 (.125) 5.45 (.215) bsc 2-plcs. dimensions in millimeters and (inches) collectoemitte collecto collecto t-max tm (b2) package outline to-264 (l) package outline 4 3 1 2 5 5 zer o 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current . t rr - revers e r ecovery time, measured from zero crossing wher e diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero . figure 9. diode test circui t figure 10, diode reverse recovery waveform and definition s 0.25 i rrm current transformer di f /dt adjus t d.u.t. +18v 0v t rr / q rr wavefor m slope = di m / dt 6 di m /dt - maximum rate of current increase during the trailing portion of t rr. 6 v r (cathode) (cathode) (anode) (cathode) (anode) downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT30GP60LDLG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X